GREENVILLE WATER DISTRICT and LINCOLN WATER COMMISSION'S

SUR-REBUTTAL TESTIMONY

OF

DR. IVOR ELLUL

Table of Contents

Page

I.	Introduction1
II.	Analysis of Hydraulic Modeling1
III.	Conclusions

1 I. Introduction

- 2 Q. Please state your full name and business address.
- 3 A. Dr. Ivor Ellul, 4265 San Felipe Street, Suite 1100, Houston, Texas 77027.
- 4 Q. Are you the same Ivor Ellul who submitted pre-filed direct testimony in these
 5 proceedings?
- 6 A. Yes, I am.
- 7 Q. Have you reviewed testimony and rebuttal testimony delivered in this case?
- 8 A. Yes, I have reviewed the rebuttal testimony of Gregg M. Giasson for Providence
 9 Water Authority.
- 10
- 11 II. Analysis of Hydraulic Modeling
- 12 Q. In your opinion is the hydraulic model sufficiently accurate for the task of
 13 delineating system usage by the wholesale and retail customers?
- 14 A. Mr. Giasson claims that the hydraulic model is utilized frequently to verify
- 15 system operations. He further claims that the hydraulic model is often field
- 16 verified to ensure accuracy. It is encouraging to see that such use is made of the
- 17 hydraulic model and underscores the importance of hydraulic modeling in the
- 18 operations management process deployed by Providence Water Authority.
- 19 Be that as it may, Mr. Giasson's description of how the hydraulic model is used in
- 20 meeting the operational and planning needs of Providence Water mostly addresses
- 21 analysis focused on determining capacity under predominantly steady-state
- 22 conditions.

1		The task at hand is different in that it requires the analysis of the pipeline network
2		under conditions that are changing, often rapidly.
3		I am, therefore, of the opinion that the task of delineating system usage by the
4		wholesale and retail customers should be undertaken with a model that is closer to
5		dynamic in nature which, in this case, would be an Extended Period Simulation
6		(EPS) model.
7	Q.	Would the EPS approach be one that would be tractable for Providence
8		Water?
9	А.	Yes, indeed. In fact, Mr. Giasson confirms that their consultant (Pare) has utilized
10		EPS many times in the past.
11	Q.	Yet, Providence Water does not feel that EPS is necessary for the analysis
12		that they have conducted. Do you agree with this statement?
13	A.	Mr. Giasson maintains that the three steady-state scenarios that have been
14		modeled by Providence Water adequately capture the wide range of system
15		demand. Whether this is an accurate statement is unclear without a review of the
16		system operational data. In general, pipeline systems tend to behave in a highly
17		dynamic manner over any twenty-four-hour period as has been seen in the
18		information that Pare has provided.
19		
20		Furthermore, Mr. Giasson claims that if one were to adopt an EPS approach, it
21		would add significant effort and expense without adding much value to the COSS.
22		In fact he estimates an additional offerst of as much as three to four newson second

9	Q.	Does this conclude your testimony?
8	III.	Conclusion
7		
6		which need not be carried out manually.
5		analytics tools are nowadays available to perform such an automated analysis
4		analysis of the output results once the model has been run multiple times. Data
3		hand and that the primary task will relate to the input of data into the model and
2		These estimates seem to be extraordinarily high given that the model is already in
1		taking 12 to 18 calendar months and costing between \$700,000 and \$800,000.

10 A. Yes.